Preprocessors

J. Grosch

GESELLSCHAFT FUR MATHEMATIK
UND DATENVERARBEITUNG MBH

FORSCHUNGSSTELLE FUR
PROGRAMMSTRUKTUREN
AN DER UNIVERSITAT KARLSRUHE

Project

Compiler Generation

Preprocessors

Josef Grosch

Aug. 4, 1992

Report No. 24

Copyright [J 1992 GMD

Gesellschaft fiir Mathematik und Datenverarbeitung mbH
Forschungsstelle an der Universitdt Karlsruhe
Vincenz-PrieBnitz-Str. 1
D-7500 Karlsruhe

Preprocessors

1. Introduction

This manual describes the features and the usage of two kinds of preprocessors contained in the
Karlsruhe Toolbox for Compiler Construction. The preprocessors cg -xz and rpp derive a parser
specification and most of a scanner specification from an attribute grammar. The preprocessors
[2r, y21, and r2I convert input for lex and yacc into specifications for rex and lalr and vice versa.
All preprocessors work as filter programs reading input from standard input and writing output
to standard output. Some preprocessors can read from a file specified as argument, too.

2. Specification of Scanner and Parser with an Attribute Grammar

Writing specifications for the scanner generator rex [Gro87] and the parser generator lalr
[GrV88] directly in the tool specific language is a practicable method. However, it has some
disadvantages. Most of the tokens are specified twice and their internal representation or code,
respectively, has to be selected and kept consistent, manually. Access to attributes using the
yacc-style $i construct (see e.g. [GrV88]) is less readable and error-prone in case of changes.
The following solution avoids these disadvantages.

Instead of using the tool specific language for rex and lalr directly, a language of higher
level is used. It replaces the $i construct by named attributes and describes a complete parser and
most of a scanner in one document. Two preprocessors transform such a specification into the
languages directly understood by rex and lalr. Fig. 1 shows the data flow using arrows between
boxes and circles. Boxes represent files or file types and circles represent tools or preprocessors.
The intermediate file named Scanner.rpp by default contains the part of the scanner specification
that can be extracted from the parser specification. Table 1 gives the meaning of the file types
used in Fig. 1 and this manual.

Table 1: Meaning of file types

file type | meaning

.pars scanner and parser specification (including S-attribution)
.scan rest of scanner specification

.Ipp intermediate data for completion of scanner in .scan

.rex scanner specification understood by rex

Jalr parser specification understood by lalr

ell input for ell (= input for lalr with EBNF constructs [GrV88])
lex input for lex

.yacc input for yacc

Source generated module (or linked from library reuse)

Scanner | generated module

Parser generated module

Errors generated module (or linked from library reuse)

The formalism used to describe parsers (.pars) is an extension of the input language for the
tools ast [Gro91] and ag [Gro89] (see section 2.1.). This leads to a rather uniform set of input
languages for most of the tools and simplifies their use. The preprocessor cg -xz transforms a
parser specification in ag notation into one in lalr notation and extracts most of a scanner
specification. The parser specification in lalr notation is written on a file named <Parser> .lalr.
<Parser> is substituted by the name of the parser module which defaults to Parser. The
extracted scanner specification is written to a file named <Scanner>.rpp. <Scanner> is

.scan .pars
Scanner
Ipp
rex Jalr

Source Scanner Parser Errors

Fig. 1: Data flow during scanner and parser generation

substituted by the name of the scanner module which defaults to Scanner. The rest of the
scanner specification must be written in the language directly understood by rex. It has to con-
tain the part of a scanner specification that can not be derived automatically. This part is usually
rather small and comprises the description of user-defined tokens like identifiers and numbers,
comments, and the computation of attributes for the tokens. A few insertion points are marked to
tell the preprocessor rpp where to include the generated parts (see section 2.2.).

2.1. Parser Specification

The input language of ast and ag can be used to generate a parser. The details of this
language can be found in the manuals for these tools [Gro89, Gro91]. The reader should be fam-
iliar with these documents because the current manual describes primarily the extensions neces-
sary for parser generation.

The language can describe concrete as well as abstract syntaxes. Nonterminal, terminal,
and abstract symbols or node types are distinguished by the definition characters =’, ’:’, and
:=’, respectively, and have to be declared by default. However, the option j of cg -xz allows
undeclared terminal symbols and declares them implicitly. In any case, terminal symbols with

attributes have to be declared explicitly.

Note, the following names are reserved for keywords and can not be used for grammar
symbols. Unfortunately, some of them occur frequently as keywords in languages that are being
defined. They should be turned into strings by surrounding apostrophes:

BEGIN CLOSE DECLARE DEMAND END

EVAL EXPORT FOR FUNCTION GLOBAL
IGNORE IMPORT IN INH INHERITED
INPUT LEFT LOCAL MODULE NONE

OUT OUTPUT PARSER PREC PROPERTY
REMOTE REV REVERSE RIGHT RULE
SCANNER SELECT STACK SUBUNIT SYN
SYNTHESIZED THREAD TREE VIEW VIRTUAL
VOID

The right-hand sides of node types without extensions are interpreted as right-hand sides of
grammar rules (see e. g. Assign, Call0, Call, and If in the example below). The children of the
right-hand side form a sequence of terminal and nonterminal symbols as usual. The names of
those node types serve as rule names. If a symbol occurs several times on one right-hand side, it
has to be preceded by different selector names (see e. g. the rule named If). Attributes in brack-
ets are not interpreted as grammar symbols but as attribute declarations representing values to be
evaluated during parsing.

Not every name of a node type is interpreted as nonterminal or terminal symbol. Only
those node types that are used (referenced) on some right-hand side and the first node type which
is regarded as start symbol are treated as grammar symbols. If a node type is defined as nonter-
minal then all associated extensions become alternative right-hand sides for this nonterminal
symbol. If a node type is defined as terminal it remains a terminal symbol. If a node type is not
defined and option j is not set an error message is issued. If option j is set then undefined node
types are implicitly defined as terminals.

The grammar needs not to be reduced. This means it may contain superfluous terminal and
nonterminal symbols. Symbols are superfluous if they are not referenced from any rule. Those
symbols are simply ignored and reported as a warning.

Example: input of cg -xz

Stat = <
Assign = Adr ' :=’' Expr
Calls = Ident <
Callo = .
Call = ' (" Actuals ")’
> .
If = IF Expr THEN Then: Stats ELSE Else: Stats ’END’
>
Expr = <
Plus = Lop: Expr '+’ Rop: Expr
Times = Lop: Expr ’'*’ Rop: Expr
I()I =I(I Exprl)l
Adr = <
Name = Ident

Index = Adr ' [’ Expr "]’

Example: output of cg -xz

Stat : Adr ’:=" Expr .
Stat : Ident
Stat : Ident ’ (! Actuals ")’

Stat : IF Expr THEN Stats ELSE Stats ’END’

Expr : Expr '+’ Expr .
Expr : Expr '*’ Expr .

Expr : ' (' Expr ")’
Expr : Ident

Expr : Adr ’'[’ Expr "]’
Adr : Ident

Adr : Adr ' [’ Expr "1’

The rule names and the selector names on the right-hand sides disappear (e. g. If). The extension
formalism is expanded (e. g. Calls and Adr) — it is not mapped to chain rules. The expansion
includes the inheritance of children and attributes (e. g. Calls). All node types that are used
somewhere become nonterminal symbols (e. g. Expr and Adr).

The rule names of non-referenced node types may be omitted. They are necessary for
example if modules are used in order to refer from an attribute computation to a grammar rule.

Example without rule names:

Stat = —-> [Tree: tTree] <
Adr ' :=" Expr { Tree mAssign (Adr:Tree, Expr:Tree); }
= Ident ' (’ Actuals ")’ { Tree := mCall (Ident:Ident, Actuals:Tree); }

>

Ident : [Ident: tIdent]

Example with rule names:

Stat = <
Assign Adr ' :='" Expr .
Call Ident ' (' Actuals ")’

>

Ident : [Ident: tIdent]
MODULE Tree

DECLARE Stat = -> [Tree: tTree]

Assign = { Tree := mAssign (Adr:Tree, Expr:Tree); }
Call = mCall (Ident:Ident, Actuals:Tree); }

|
—_—
H
=
(]
()

|

END Tree

Attribute declarations and attribute computations are written exactly as for ast and ag.
Attribute computations may be placed everywhere within right-hand sides, not only at the end.
These computations are executed from left to right as parsing proceeds. They may only make
use of those attributes that have already been computed before or to the left, respectively. The
extension or inheritance mechanism for right-hand sides, attribute declarations, and attribute
computations is available. The default computations (copy rules) for synthesized attributes are
available, too. A specification may be separated into several modules. There could for example
be modules for the concrete syntax, for the attribute declarations, and for the attribute computa-
tions. It is even possible to distribute the mentioned kinds of information into several modules.

Attribute declarations and attribute computations with named attributes replace the explicit
declaration of the type tParsAttribute and the $i construct. The attribute declarations are
transformed automatically into a declaration of the type tParsAttribute. The attribute

5

computations in the new style are more readable and robust against changes. The given attribute
computations are checked for completeness and whether the resulting attribute grammar obeys
the SAG property. Only attribute grammars with synthesized attributes can be evaluated during
parsing.

Every terminal has a predefined attribute named Position of type tPosition. This type is a
user defined struct (record) type and has to contain at least the members Line and Column. This
attribute describes the source coordinates of every token and it is computed automatically by rex
generated scanners. The values of all other attributes of terminals have to be supplied by the
scanner by user specified computations. Still, attribute computations for those attributes (except
Position) have to be specified in the parser specification, too. They are used to generate the pro-
cedure ErrorAttribute. This procedure is called by the parser whenever tokens are inserted in
order to repair syntax errors. The procedure and therefore the mentioned attribute computations
have to supply default values for the attributes of tokens.

The right-hand side of a node type or a grammar rule, respectively, may contain actions to
be executed during parsing. These actions may be placed at the end of the right-hand side or
anywhere between the right-hand side elements. In any case these actions are executed from left
to right according to the progress of parsing. The syntax of the actions is the one defined for the
attribute computations of ag. It is assumed that most of the actions will compute attributes.
Actions which are not attribute computations are possible but have to be written as some kind of
CHECK statement:

=> statement ; or => { statement_sequence } ;

The following extensions of the language of ast and ag are used for parser generation, only.
A grammar may be optionally headed by names for the modules to be generated:

SCANNER Name PARSER Name

The first identifier specifies the module name of the scanner to be used by the parser. The
second identifier specifies a name which is used to derive the names of the parsing module, the
parsing routine, the parse tables, etc. If the names are missing they default to Scanner and
Parser. In this document we refer to these names by <Scanner> and <Parser>. The parser name
may be followed by a set of target code sections which is copied unchecked and unchanged to
the input of the parser generator or the parser module, respectively:

SCANNER Name
PARSER Name

IMPORT { target_code }
EXPORT { target_code }
GLOBAL { target_code }
LOCAL { target_code }
BEGIN { target_code }
CLOSE { target_code }

The precedence and associativity for operator tokens can be specified after the keyword
PREC using LEFT, RIGHT, and NONE for left-, right-, and no associativity. Each group headed
by one of the latter three keywords introduces a new group of tokens with increasing pre-
cedence. The precedence and associativity information is copied unchanged to the parser gen-
erator.

Example:

PREC LEFT MONOP
NONE SEQ
LEFT "+ ’'-'
LEFT "*’ '/’ MOD

The precedence and associativity information is usually propagated implicitly to the grammar

6

rules by taking it from the right-most token in a rule. Rules without an operator token can get the
precedence and associativity from an operator token by adding a PREC clause at the end of a
right-hand side.

*/
*/
*/
*/

Example:
Expr = <
= Expr Expr PREC SEQ /* explicit prec. + assoc. of SEQ
= -’ Expr PREC MONOP /* overwrite prec. + assoc. of ’'-’ by MONOP
= Expr '+’ Expr /* implicit prec. + assoc. of '+’
= Expr -’ Expr /* implicit prec. + assoc. of -7

>

Tokens or terminal symbols are mapped automatically to integer numbers to be used as
internal representation. This mapping can be overwritten by explicitly giving codes for termi-
nals.

Example:
Ident [Ident: tIdent] /* implicitly coded */
IntConst : 5 [Value: int] /* explicitly coded as 5 */

The attribute declarations for terminals are turned into a declaration of the type tScanAttri-
bute. The scanner communicates attribute values of terminals to the parser using a global vari-
able called Attribute which is of this type. This type is a union type (variant record) with one
member (variant) for each terminal with attributes. The names of the terminals are taken for the
names of these members (variants). However, this leads to problems if the terminals are named
by strings or by keywords of the implementation language. Therefore terminals may have two
names. The second one is used as member name in the type tScanAttribute. The predefined attri-
bute Position mentioned above is always included in this type. Assignments of attribute values
in the scanner therefore have to use two selections to describe an attribute:

Attribute.<selector name>.<attribute name> =

Example:

definition of terminals including attributes and member selectors in the parser specification

Ident [Ident: tIdent] /* selector name: Ident */
’:=' sAssign : [Ident: tIdent] /* selector name: sAssign */
TRUE sTRUE [Ident: tIdent] /* selector name: sTRUE */
rout [Ident: tIdent] /* selector name: yyl7 */

access of attributes in the scanner specification

Attribute.
Attribute.
Attribute.
Attribute.

Ident.Ident
sAssign.Ident
sTRUE. Ident
yyl7.Ident

access of attributes in the parser specification (at node directly)

Ident

Position

access of attributes in the parser specification (from a child node)

Ident:Ident
" :=':Ident
TRUE: Ident
..’ :Ident

4

Ident:Position
:=':Position

TRUE:Position
"..":Position

The preprocessor for the parser specification is part of the program cg. It is called by the
following command:

cg -xzvjc [Parser.pars]

The input is read either from the file given as argument or from standard input if the argument is
missing. The output is written to a file named <Parser>.lalr. The program is controlled by the
following options:

X generate scanner specification for rex

z generate parser specification for lalr

v omit actions in the generated parser specification

] allow undefined node types; define implicitly as terminals
c generate C source code (default is Modula-2)

Appendix 1 of the ag manual [Gro89] contains the complete formal syntax understood by
the program cg. Appendix 2 of this manual shows a parser specification for the example
language MiniLAX. It separates context-free grammar and attribute computations in two
modules. The attribute computations in the module 7ree use one attribute also called 7Tree and
describe the construction of an abstract syntax tree by calling functions generated by ast. The
implementation language is C.

2.2. Scanner Specification

The scanner specification has to contain only those parts that can not be extracted automati-
cally from the parser specification. This is as already mentioned above the description of
user-defined tokens like identifiers and numbers, comments, and the computation of attributes
for the tokens. The formalism to describe this fragmentary scanner specification (.scan) is the
input language of rex [Gro87]. It may contain three insertion points which instruct the prepro-
cessor rpp (rex preprocessor) to include certain generated parts. Moreover, tokens in return state-
ments can be denoted by the same strings or identifiers as in the parser specification.

INSERT tScanAttribute
in the EXPORT section is replaced by the generated declaration of the type tScanAttribute and
the head or external declaration of the procedure ErrorAttribute.

INSERT ErrorAttribute
in the GLOBAL section is replaced by the body of the generated procedure ErrorAttribute.

The third insertion point lies in the RULE section and has the following syntax (only the
brackets [] are used as meta characters and denote optional parts):

INSERT RULES [CASE-INSENSITIVE] [[NOT] #<start_states>#] [{ <target_code> }]
It is replaced by as many rules as there are tokens extracted automatically from the parser
specification. Every rule has the following format:

NOT # <start_states> # <token> : { <target_code> return <code>; }
The start states including the keyword NOT and the target code are optional and are copied to
the generated rule as indicated. If CASE-INSENSITIVE is specified, the regular expressions for

the tokens are constructed to match lower as well as upper case letters. Note, only rules for
tokens without explicitly declared attributes are constructed automatically.

Within a rule, return (or RETURN) statements are used to report the internal code of a
recognized token. The expression of those statements can be any expression of the implementa-
tion language or a string or an identifier used in the parser specification. The latter are replaced
by their internal representation.

Example:

return 5;
return Ident;
return ' :=';

The program rpp is called by the following command:
pp [Scanner.rpp] < Scanner.scan > Scanner.rex

The fragmentary scanner specification is read from standard input. The scanner specification
extracted from the parser specification is read from a file given as argument. This argument is
optional and defaults to Scanner.rpp. The scanner specification understood by rex is written on
standard output. The basename Scanner in the command line above is usually substituted by the
name of the scanner module.

Appendix 1 contains a scanner specification for the example language MiniLAX. It uses C
as implementation language.

.yacc

SRV
Jal
© ORENC

Fig. 2: Conversion programs for scanner and parser specifications

.pars

ell

3. Conversion of Scanner and Parser Specifications

3.1. Input Languages

The input languages of rex and lalr have been designed to be as readable as possible.
Although they contain the same information as inputs for lex [Les75] and yacc [Joh75] they are
syntactically incompatible. Several conversion programs allow the transformation of input for
rex and lalr to input for lex and yacc or vice versa. Fig.2 shows the possible conversions for
scanner and parser specifications. Table 2 lists the existing filter programs and the types of their
input and output files.

b

The option ’-v’ instructs y2/ and cg to omit the semantic actions in the produced output.
The following restrictions or problems are known to exist because they can not be mapped to the

Table 2: Filters for input conversion

filter | input | output
12r lex .rex
21 .rex Jdex
y21 .yacc | .lalr
cg-u | .pars | .yacc
cg-z | .pars Jalr
bnf ell Jalr

target tool:

12r

- yymore

- REJECT

- yywrap (redirection can be done with rex, but differently)

- 9%T (specification of the character set is not possible)

r2l

- yyPrevious

- EOF (specifies actions to be performed upon reaching end of file)
y2l

- The conversion of token definitions may not be completely automatic.

- If scanning depends on information collected by the parser then parsers generated by yacc
and lalr may behave differently because they do not agree upon the order or timing, respec-
tively, of the execution of read (shift) and reduce actions.

bnf

- The attribute computations for ell and lalr are different and are not converted.

3.2. Interfaces

The interfaces of scanners and parsers generated by lex/yacc and rex/lalr are incompatible.
The differences are primarily caused by different names for the external (exported) objects.
Table 3 lists the interface objects. The interfaces of the scanners and parsers generated by rex
and /alr can be switched from the default as listed in Table 3 to an approximation of the lex and
yacc interfaces. This is controlled by cpp commands:

define lex_interface
in the EXPORT section of a rex specification selects a lex-style interface for the scanner.
define lex_interface

in the EXPORT section of a lalr specification tells the parser to use a lex-style interface for the
scanner.

define yacc_interface
in the EXPORT section of a lalr specification selects a yacc-style interface for the parser.

The output of the preprocessors [2r and y2/ automatically selects lex- and yacc-style inter-
faces. The following problems are known, currently:

10

Table 3: Interfaces of generated scanners and parsers

object yacc/lex lalr/rex

parse routine int yyparse (); int Parser ();

stack size YYMAXDEPTH yylnitStackSize

attribute type YYSTYPE tParsAttribute

global attribute | YYSTYPE yylval; | tScanAttribute Attribute;

position type typedef struct { short Line, Column; ... } tPosition;
attribute type typedef struct { tPosition Position; ... } tScanAttribute;
scanner routine | int yylex (); int GetToken ();

error repair void ErrorAttribute ();

line number int yylineno; member Attribute.Position.Line

token buffer char yytext [];

token length int yyleng;

- The output of [2r provides the matched string in the array yytext to be used in action state-
ments. This is done by calling the procedure Getword. However, many actions do not need
yytext. Deleting superfluous calls of Getword will make the scanner significantly faster.

- Access to the line counter yylineno has to be replaced by access to

Attribute.Position.Line

- If both, scanner and parser specification have been converted by [2r and y2/ in order to be
fed into rex and lalr, the two preprocessor statements which define lex_interface should be
deleted in order to select the standard interface. This offers more comfort with respect to
the information about the source position.

Acknowledgements

The preprocessor bnf has been implemented by Bertram Vielsack. The preprocessors y2I,
[2r, rpp, and cg -xz have been implemented by Thomas Miiller.

References

[Gro87]

[GrV88]

[Gro89]

[Gro91]

[Joh75]

[Les75]

J. Grosch, Rex - A Scanner Generator, Compiler Generation Report No. 5, GMD
Forschungsstelle an der Universitat Karlsruhe, Dec. 1987.

J. Grosch and B. Vielsack, The Parser Generators Lalr and Ell, Compiler Generation
Report No. 8, GMD Forschungsstelle an der Universitat Karlsruhe, Apr. 1988.

J. Grosch, Ag - An Attribute Evaluator Generator, Compiler Generation Report No.
16, GMD Forschungsstelle an der Universitat Karlsruhe, Aug. 1989.

J. Grosch, Ast - A Generator for Abstract Syntax Trees, Compiler Generation
Report No. 15, GMD Forschungsstelle an der Universitat Karlsruhe, Sep. 1991.

S. C. Johnson, Yacc — Yet Another Compiler-Compiler, Computer Science
Technical Report 32, Bell Telephone Laboratories, Murray Hill, NJ, July 1975.

M. E. Lesk, LEX — A Lexical Analyzer Generator, Computing Science Technical
Report 39, Bell Telephone Laboratories, Murray Hill, NJ, 1975.

Appendix 1: Scanner Specification for MiniLAX

EXPORT {
include "Idents.h"
include "Positions.h"

INSERT tScanAttribute
}

GLOBAL {

include <math.h>

include "Memory.h"

include "StringMem.h"
include "Idents.h"

include "Errors.h"

INSERT ErrorAttribute
}

LOCAL { char Word [256]; }

DEFAULT {
Messagel ("illegal character", xxError, Attribute.Position, xxCharacter,
}
EOF {
if (yyStartState == Comment)
Message ("unclosed comment", xxError, Attribute.Position);
}
DEFINE digit = {0-9}
letter = {a-z A-Z}

START Comment

RULE
"(*" :— {yyStart (Comment);}

#Comment# "*)" :— {yyStart (STD);}

#Comment# "*" | - {*\t\n} + :— {}

#STD# digit + : {(void) GetWord (Word);
Attribute.IntegerConst.Integer = atoi (Word);
return IntegerConst;}

#STD# digit * "." digit + (E {+\-} ? digit +) 7

{ (void) GetWord (Word);
Attribute.RealConst.Real = atof ((char *) Word);
return RealConst;}

INSERT RULES #STD#
#STD# letter (letter | digit) *

11

TokenPtr) ;

{Attribute.Ident.Ident = MakeIdent (TokenPtr, TokenLength);

return Ident;}

12

Appendix 2: Parser Specification for MiniLAX
PARSER
GLOBAL {# include "Idents.h" }

BEGIN { BeginScanner (); }

PREC LEFT r<s /* operator precedence */
LEFT r+
LEFT rxr
LEFT NOT

PROPERTY INPUT

RULE /* concrete syntax */
Prog = PROGRAM Ident ’;’ ’'DECLARE’ Decls ’"BEGIN’ Stats 'END’ .’
Decls = <

Declsl = Decl

Decls?2 = Decls ’;’ Decl
>
Decl = <

Var = Ident ’':’ Type

ProcO PROCEDURE Ident ’;’ ’'DECLARE’ Decls ’'BEGIN’ Stats ’END’
Proc = PROCEDURE Ident ' ('’ Formals ")’ ’;’'
"DECLARE’ Decls ’'BEGIN’ Stats ’END’

>

Formals = <
Formalsl = Formal
Formals2 = Formals ’;’ Formal
>
Formal = <
Value = Ident ’:’ Type
Ref = VAR Ident ’':’ Type
> .
Type = <
Int = INTEGER
Real = REAL
Bool = BOOLEAN
Array = ARRAY ’' [’ Lwb: IntegerConst ’..’ Upb: IntegerConst ']’ OF Type
> .
Stats = <
Statsl = Stat
Stats2 = Stats ’;’ Stat
> .
Stat = <
Assign = Adr ' :=" Expr
CalloO = Ident
Call = Ident ' ('’ Actuals ")’
If = IF Expr THEN Then: Stats ELSE Else: Stats ’END’
While = WHILE Expr DO Stats ’END’
Read = READ ' (' Adr ')’
Write = WRITE ' (' Expr ')’
> .
Actuals = <
Exprl = Expr

Expr2 = Actuals ’,’ Expr

Expr
Less
Plus
Times
Not
I()I
IConst
RConst
False
True
Adr
Name
Index

Ident
IntegerConst
RealConst

MODULE Tree

PARSER GLOBAL
include

tTree

}

nInteger,

BEGIN {
nInteger
nReal
nBoolean

{

"Tree.h"

= mInteger

nReal,

<
Lop:
Lop:
Lop:
NOT

I(I

’<’
I+I
rxr

Expr
Expr
Expr
Expr
Expr
IntegerConst
RealConst
FALSE
TRUE

<
Ident
Adr ' [’

Rop: Expr
Rop: Expr
Rop: Expr

I)I

I]I

Expr

/* terminals (with attributes)

[Ident: tIdent]
[Integer]
[Real float]

{ Ident = NoIdent HE
{ Integer =0 ;o
{ Real := 0.0 P

/* import functions for tree construction

nBoolean;

mReal
mBoolean

*/

*/

13

14

—— o o

e e e e e e e

/* attributes for tree construction */
DECLARE
Decls Decl Formals Formal Type Stats Stat Actuals Expr = [Tree: tTree]
RULE /* tree construction = */
/* mapping: concrete syntax —-> abstract syntax */
Prog = { => { TreeRoot = mMinilLax (mProc (mNoDecl (), Ident:Ident,
Ident:Position, mNoFormal (), ReverseTree (Decls:Tree),
ReverseTree (Stats:Tree)));};
Declsl = { Tree : {Decl:Tree—>\Decl.Next = mNoDecl (); Tree = Decl:Tree; };
Decls?2 { Tree := {Decl:Tree—->\Decl.Next = Decls:Tree; Tree = Decl:Tree;};
Var = { Tree := mVar (NoTree, Ident:Ident, Ident:Position, mRef (Type:Tree));
ProcO = { Tree := mProc (NoTree, Ident:Ident, Ident:Position, mNoFormal (),
ReverseTree (Decls:Tree), ReverseTree (Stats:Tree));
Proc = { Tree := mProc (NoTree, Ident:Ident, Ident:Position, ReverseTree
(Formals:Tree), ReverseTree (Decls:Tree), ReverseTree (Stats:Tree));
Formalsl= { Tree := {Formal:Tree—->\Formal.Next = mNoFormal ();
Tree = Formal:Tree; };
Formals2= { Tree := {Formal:Tree—->\Formal.Next = Formals:Tree;
Tree = Formal:Tree; };
Value = { Tree := mFormal (NoTree, Ident:Ident, Ident:Position,
mRef (Type:Tree));
Ref = { Tree := mFormal (NoTree, Ident:Ident, Ident:Position,
mRef (mRef (Type:Tree)));
Int = { Tree := nlInteger;
Real = { Tree := nReal;
Bool = { Tree := nBoolean;
Array = { Tree := mArray (Type:Tree, Lwb:Integer, Upb:Integer, Lwb:Position);
Statsl = { Tree := {Stat:Tree->\Stat.Next = mNoStat (); Tree = Stat:Tree;};
Stats2 = { Tree := {Stat:Tree->\Stat.Next = Stats:Tree; Tree = Stat:Tree;};
Assign = { Tree := mAssign (NoTree, Adr:Tree, Expr:Tree, ’:=':Position);
Callo = { Tree := mCall (NoTree, mNoActual (Ident:Position), Ident:Ident,
Ident:Position);
Call = { Tree := mCall (NoTree, ReverseTree (Actuals:Tree), Ident:Ident,
Ident:Position);
If = { Tree := mIf (NoTree, Expr:Tree, ReverseTree (Then:Tree),
ReverseTree (Else:Tree));
While = { Tree := mWhile (NoTree, Expr:Tree, ReverseTree (Stats:Tree));
Read = { Tree := mRead (NoTree, Adr:Tree);
Write = { Tree := mWrite (NoTree, Expr:Tree);
Exprl = { Tree := mActual (mNoActual (Expr:Tree->\Expr.Pos), Expr:Tree);
Expr2 = { Tree := mActual (Actuals:Tree, Expr:Tree);
Less = { Tree := mBinary (’<’:Position, Lop:Tree, Rop:Tree, Less);
Plus = { Tree := mBinary (’+’:Position, Lop:Tree, Rop:Tree, Plus);
Times = { Tree := mBinary (’*’:Position, Lop:Tree, Rop:Tree, Times);
Not = { Tree := mUnary (NOT:Position, Expr:Tree, Not);
IConst = { Tree := mIntConst (IntegerConst:Position, IntegerConst:Integer);
RConst = { Tree := mRealConst (RealConst:Position, RealConst:Real);
False = { Tree := mBoolConst (FALSE:Position, false);
True = { Tree := mBoolConst (TRUE:Position, true);
Name = { Tree := mIdent (Ident:Position, Ident:Ident);
Index = { Tree := mIndex (' [’:Position, Adr:Tree, Expr:Tree);

END Tree

e e e e e e e e e e v A e o e o

Contents
1. INEPOAUCTION ...ttt st e 1
2. Specification of Scanner and Parser with an Attribute Grammar 1
2.1. Parser SPecifiCationcooiiiiiiiiiiieee e 2
2.2. Scanner SPecifICAtIONccccevviieiiiiriieiierie et 7
3. Conversion of Scanner and Parser Specificationsccccceceevveecieenieniieennene 8
3.1. INPUL LANGUAZESvveieiiiieiiie et e 8
3.2. INEEITACES ettt 9
RETEIENCES ..o 10
Appendix 1: Scanner Specification for MiniLAXcccccceevviieniieenieeeiee e, 11

Appendix 2: Parser Specification for MiniLAX ..o 12

